Publicaciones de Geodesia, Gravedad y Sismología ( English version)

Publicaciones de Geodesia: modelos geopotenciales

Rapp R. H., 1971. Methods for the computation of geoid undulations from potential coefficients. Bull. Géod., 101, 283-297.

Publicaciones de Geodesia: correcciones del terreno y efecto indirecto

Forsberg R., 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Reports of the Department of Geodetic Science and Surveying, 355.

Forsberg R. and Tscherning C. C., 1997. Topographic effects in gravity field modelling for BVP. Lecture Notes in Earth Sciences, Geodetic boundary value problems in view of the one centimeter geoid, pp. 241-272, eds Sanso, F. & Rummel, R., Springer.

Sideris M.G., 1984. Computation of gravimetric terrain corrections using FFT techniques. Department of Civil Engineering. University of Calgary.

Sideris M.G., 1985. A FFT method for computing terrain corrections. Manuscripta Geodaetica, 10, 66-73.

Sideris M.G., 1990. Rigorous gravimetric terrain modelling using Molodensky's operator. Manuscripta Geodaetica, 15, 97-106.

Wichiencharoen C., 1982. The indirect effects on the computation of geoid undulations. Reports of the Department of Geodetic Science and Surveying, 336.

Publicaciones de Geodesia: computación del geoide

Corchete V., 2013. The first high-precision gravimetric geoid of Hungary: HGG2013.. Online publication.

Corchete V., 2013. The first high-resolution gravimetric geoid for Ukraine: UGG2013.. Online publication.

Forsberg R. and Kearsley A. H. W., 1989. Precise gravimetric geoid computations over large regions. Lecture notes in Earth Sciences, 29, 65-83.

Haagmans R., de Min E. and von Gelderen M., 1993. Fast evaluation of convolution integrals on the sphere using 1D FFT and a comparison with existing methods for Stokes' integral. Manuscripta Geodaetica, 18, 227-241.

Heck B., 1992. A revision of Helmert's second method of condensation in geoid and quasigeoid determination. IAG 112: Geodesy and Physics of the Earth, pp. 246-251.

Kearsley A. H. W., 1986. Data requirements for determining precise relative geoid heights from gravimetry. Journal of Geophysical Research, 91, 9193-9201.

Kearsley A. H. W., 1988. Tests on the recovery of precise geoid height differences from gravimetry. Journal of Geophysical Research, 93, 6559-6570.

Kuroishi Y., 1995. Precise gravimetric determination of the geoid in the vicinity of Japan. Bulletin of the Geographical Survey Institute, 41, 1-93.

Manzano F., Corchete V., Chourak M. and Manzano G., 2010. Determination of a Gravimetric Geoid Solution for Andalusia (South Spain). Engineering, 2, 160-165.

Schwarz K. P., Sideris M.G. and Forsberg R., 1990. The use of FFT in physical geodesy. Geophys. J. Int., 100, 485-514.

Smith D. A. and Roman D. R., 2001. GEOID99 and G99SSS: 1-arc-minute geoid models for the United States. Journal of Geodesy, 75, 469-490.

Strang van Hees G., 1990. Stokes formula using FFT techniques. IAG 110. From Mars to Greenland: Charting Gravity with Space and Airborne Instruments, pp. 405-408.

Strang van Hees G., 1990. Stokes formula using FFT techniques. Manuscripta Geodaetica, 15, 235-239.

Publicaciones de Geodesia: sistemas de referencia

Department of Defense WGS 84, 2000. WGS 84 its definition and relationships with local geodetic systems. Department of Defense WGS 84, NIMA TR 8350.

Schwarz K. P., Sideris M. G. and Forsberg R., 1987. Orthometric heights without leveling. Journal of Surveying Engineering, 113, 28-40.

The Defense Mapping Agency, 1983. Geodesy for the layman. The Defense Mapping Agency, DMA TR 80-003.

The Defense Mapping Agency, 1989. The universal grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS). The Defense Mapping Agency, DMA TM 8358.2.

The Defense Mapping Agency, 1996. Datums, ellipsoids, grids and grids reference systems. The Defense Mapping Agency, DMA TM 8358.

Publicaciones de Geodesia: mareas

Manzano F., Corchete V. y Lastra X. B., 2007. Análisis espectral del registro de marea en la estación de Ceuta. Ingeniería Civil, 146, 1-7.

Publicaciones de Gravedad

Balmino G., 2001. New space missions for mapping the Earth’s gravity field. C. R. Acad. Sci. Paris, 2, IV, 1353–1359.

Corchete V., Chourak M. and Khattach D., 2010. A Methodology for Filtering and Inversion of Gravity Data: An Example of Application to the Determination of the Moho Undulation in Morocco. Engineering, 2, 149-159.

Moritz H., 1968. On the use of the terrain correction in solving Molodensky's problem. Reports of the Department of Geodetic Science and Surveying, 108.

Nagy D., 1966. The gravitational attraction of a right rectangular prism. Geophysics, 31, 362-371.

Publicaciones de Sismología: diseño resistente a terremotos

Adalier K. and Aydingun O., 2001. Structural engineering aspects of the June 27, 1998 Adana–Ceyhan (Turkey) earthquake. Engineering Structures, 23, 343-355.

Bungum H., 1995. Seismic source evaluation, strong motion attenuation and soil response in Central America. Norwegian Agency for Development Cooperation, 113-121.

Corchete V., 2010. The Analysis of Accelerograms for the Earthquake Resistant Design of Structures. International Journal of Geosciences, 2010, 32-37.

Davenport P. N., 2001. Seismic intensities derived from strong motion instruments in New Zealand. NZSEE 2001 Conferences, Paper No. 4.03.01, 1-7.

Shakal A. F. , Huang M. J. and Graizer V. M., 2003. Strong-Motion Data Processing. International Handbook of Earthquake and Engineering Seismology, 81B, 967-981.

Theodulidis N. P. and Papazachos B. C., 1992. Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and displacement. Soil Dynamics and Earthquake Engineering, 11, 387-402.

Trifunac M. D. and Todorovska M. I., 2001. Evolution of accelerographs, data processing, strong motion arrays and amplitude and spatial resolution in recording strong earthquake motion. Soil Dynamics and Earthquake Engineering, 21, 537-555.

Publicaciones de Sismología: filtrado de ondas superficiales

Badal J., Corchete V. and Serón F., 1987. Datos de dispersigón contaminados por ruido y atenuación anelástica. Rev. Acad. Ciencias Zaragoza, 42, 105-118.

Badal J., Corchete V. and Serón F., 1989. Ondas sísmicas dispersadas contaminadas por ruido aleatorio. Rev. de Geofísica, 45, 23-32.

Corchete V., Badal J., Payo G. and Serón F. J., 1989. Filtrado de ondas sísmicas dispersadas. Rev. de Geofísica, 45, 39-58.

Saha J. G., Mehta C. H. and Bhatta D. D. , 1992. On the use of instantaeous amplitude in timing the seismic events. Bulletin of the Seismological Society of America, 82, 1507-1510.

Publicaciones de Sismología: filtrado e inversión de ondas superficiales

Chourak M., Navarro M., Corchete V. and Badal J., 2004. Near surface velocity structure of Andalucia (Southern Spain) and Alboran Sea region from 0.15-2.0 Hz Rayleigh waves. Tecnociencia, 6, 125-141.

Corchete V., Badal J., Payo G., Casas J. A., Pujades L. and Serón F. J., 1990. An attempt of joint inversion of Rayleigh-wave phase and group velocities in Iberia. Rev. de Geofísica, 46, 83-96.

Corchete V. and Badal J., 2004. Inversion of surface-wave phase velocities in a slightly anisotropic medium. Tecnociencia, 6, 23-41.

Corchete V., 2006. A methodology for filtering and inversion of surface waves: an example of application to the lithospheric structure determination of the South Iberia. Tecnociencia, 8, 91-112.